

Direct cAMP ELISA kit

Catalog #: ADI-900-066 96 Well Kit

USE FOR RESEARCH PURPOSES ONLY

Unless otherwise specified expressly on the packaging, all products sold hereunder are intended for and may be used for research purposes only and may not be used for food, drug, cosmetic or household use or for the diagnosis or treatment of human beings. Purchase does not include any right or license to use, develop or otherwise exploit these products commercially. Any commercial use, development or exploitation of these products or development using these products without the express written authorization of Enzo Life Sciences, Inc. is strictly prohibited. Buyer assumes all risk and liability for the use and/or results obtained by the use of the products covered by this invoice whether used singularly or in combination with other products.

LIMITED WARRANTY; DISCLAIMER OF WARRANTIES

These products are offered under a limited warranty. The products are guaranteed to meet all appropriate specifications described in the package insert at the time of shipment. Enzo Life Sciences' sole obligation is to replace the product to the extent of the purchasing price. All claims must be made to Enzo Life Sciences, Inc., within five (5) days of receipt of order. THIS WARRANTY IS EXPRESSLY IN LIEU OF ANY OTHER WARRANTIES OR LIABILITIES, EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON- INFRINGEMENT OF THE PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS OF OTHERS, AND ALL SUCH WARRANTIES (AND ANY OTHER WARRANTIES IMPLIED BY LAW) ARE EXPRESSLY DISCLAIMED.

TRADEMARKS AND PATENTS

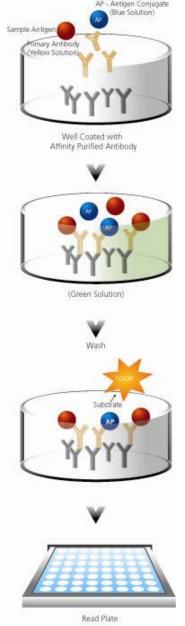
Several Enzo Life Sciences products and product applications are covered by US and foreign patents and patents pending. Enzo is a trademark of Enzo Life Sciences, Inc.

> FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES

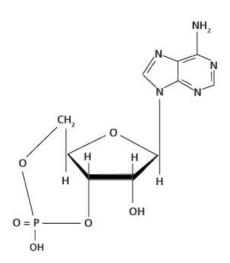
TABLE OF CONTENTS

Please read entire booklet before proceeding with the assay.

Carefully note the handling and storage conditions of each kit component.


Please contact Enzo Life Sciences Technical Support if necessary.

Introduction	2
Principle	3
Materials Supplied	4
Storage	5
Additional Materials Needed	5
Sample Handling	5
Sample Recoveries	6
Protocol for Cell Lysates	6
Protocol for Tissue Samples	7
Reagent Preparation	7
Assay Procedure	9
Calculation of Results	10
Typical Results	11
Performance Characteristics	13
References	15
Contact Information	



INTRODUCTION

The Direct cyclic AMP Enzyme-linked Immunosorbent Assay (ELISA) kit is a competitive immunoassay for the quantitative determination of cyclic AMP in cells, tissue, and culture supernatants treated with HCI. The optional acetylated assay format provides an approximate 10-fold increase in sensitivity and is ideal for samples with extremely low levels of cAMP. If expected levels of cAMP are unknown, the investigator may evaluate a few samples in the non-acetylated format in order to determine if higher sensitivity is required.

Adenosine 3', 5'-cyclic monophosphate (cyclic AMP; cAMP) is one of the most important "second messengers" involved as a modulator of physiological processes⁵. cAMP is also involved in regulating neuronal, glandular, cardiovascular, immune and other functions⁶⁻⁹. A number of hormones are known to activate cAMP through the action of the enzyme adenylate cyclase which converts ATP to cAMP. These hormones include a variety of anterior pituitary peptide hormones such as corticotropin (ACTH), glucagon, calcitonin, thyroid stimulating hormone (TSH), and luteinizing hormone (LH). Because cAMP has been shown to be involved in the cardiovascular and nervous systems, immune mechanisms, cell growth and differentiation, and general metabolism¹⁰⁻¹², there remains considerable interest in the measurement of intracellular cAMP in tissues and cell cultures. The investigation of cAMP may help to provide a clearer understanding of the physiology and pathology of many disease states.

cyclic AMP

PRINCIPLE

- 1. Standards and samples are added to wells coated with a GxR IgG antibody. A blue solution of cAMP conjugated to alkaline phosphatase is then added, followed by a yellow solution of rabbit polyclonal antibody to cAMP.
- 2. During a simultaneous incubation at room temperature the antibody binds, in a competitive manner, the cAMP in the sample or conjugate. The plate is washed, leaving only bound cAMP.
- 3. pNpp substrate solution is added. The substrate generates a yellow color when catalyzed by the alkaline phosphatase on the cAMP conjugate.
- 4. Stop solution is added. The yellow color is read at 405nm. The amount of signal is indirectly proportional to the amount of cAMP in the sample.

HCl is caustic. Keep tightly capped.

The standard should be handled with care due to the known and unknown effects of the antigen.

Triethylamine and acetic anhydride are lachrymators. **Caution**: corrosive, flammable, and harmful vapor.

Avoid contamination by endogenous alkaline phosphatase. Do not expose reagents or supplies to bare skin.

Activity of conjugate is affected by nucleophiles such as azide, cyanide, and hydroxylamine.

Stop solution is caustic. Keep tightly capped.

MATERIALS SUPPLIED

- 1. 0.1M HCI
 - 27 mL, Product No. 80-0080 0.1M hydrochloric acid in water
- cyclic AMP Standard
 0.5 mL, Product No. 80-0056
 A solution of 2,000 pmol/mL cAMP

3. Acetylation Kit

- 2 vials, Product No. 950-001
 - **a. Triethylamine** 2 mL, Product No. 80-0063
 - b. Acetic Anhydride 1 mL, Product No. 80-0064

4. Goat anti-Rabbit IgG Microtiter Plate

One plate of 96 wells, Product No. 80-0060

A clear plate of break-apart strips coated with a goat anti-rabbit polyclonal antibody

- Neutralizing Reagent
 5 mL, Product No. 80-1475
- 6. **cAMP ELISA Antibody** 5 mL, Product No. 80-0604

A yellow solution of rabbit polyclonal antibody to cAMP

7. cAMP Conjugate

5 mL, Product No. 80-0053

A blue solution of cAMP conjugated to alkaline phosphatase

8. Wash Buffer Concentrate 27 mL, Product No. 80-1286

Tris buffered saline containing detergents

- 9. pNpp Substrate
 - 20 mL, Product No. 80-0075 A solution of p-nitrophenyl phosphate
- 10. Stop Solution
 5 mL, Product No. 80-0247
 A solution of trisodium phosphate in water
- 11. **cAMP Direct Assay Layout Sheet** 1 each, Product No. 30-0101
- 12. Plate Sealer, 1 each, Product No. 30-0012

*

Reagents require separate storage conditions.

STORAGE

All components of this kit, **except the Conjugate and Standard**, are stable at 4°C until the kit's expiration date. The Conjugate and Standard **should** be stored at -20°C upon receipt.

ADDITIONAL MATERIALS NEEDED

- 1. Deionized or distilled water
- 2. Precision pipets for volumes between 5 μ L and 1,000 μ L
- 3. Repeater pipet for dispensing 50 µL and 200 µL
- 4. Disposable beakers for diluting buffer concentrates
- 5. Graduated cylinders
- 6. Microplate shaker
- 7. Lint-free paper toweling for blotting
- 8. Microplate reader capable of reading at 405 nm
- 9. Triton X-100 (optional for sample preparation)
- 10. Liquid nitrogen, mortar & pestle, and concentrated HCI (optional for tissue samples)

If buffers other than those provided are used in the assay, the end-user must determine the appropriate dilution and assay validation.

Samples must be stored at or below -20°C to avoid loss of bioactive analyte. Avoid repeated freeze/ thaw cycles.

SAMPLE HANDLING

Treatment of cells and tissue with HCI will stop endogenous phosphodiesterase activity and allow for the direct measurement of these samples in the assay without evaporation or further processing. Recommended treatment protocols follow. Samples containing rabbit IgG will interfere with the assay.

Please note that some samples may contain high levels of cAMP and additional dilution may be required. Samples with low levels of cAMP may be assayed in the acetylated format or the samples may be concentrated.

Biological fluids (e.g. serum, plasma, saliva) should be used in the cyclic AMP ELISA Kit (Cat. #900-067, 901-067) or the cyclic AMP Complete ELISA Kit (Cat. #900-163, 901-163).

SAMPLE RECOVERIES

cAMP standard was spiked into treated culture media, diluted with 0.1M HCl, and measured in the kit. The results were as follows:

	Non-Acetylated Format		Acety	lated Format
Sample	% Recommended		%	Recommended
	Recovery	Dilution	Recovery	Dilution
Tissue Culture	94.8%	1:4	95.2%	1:4
Media				

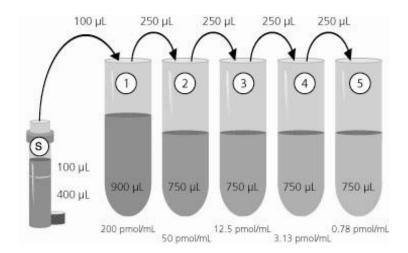
0.1 M HCl should not be used to dilute culture supernatants (without pretreatment with concentrated HCl), serum, or saliva samples.

PROTOCOL FOR CELL LYSATES

The concentration of cells used must be optimized for the specific cell line and treatment conditions. Cells may be grown in typical containers such as Petri dishes, culture plates (e.g., 48-well, 12-well, or 96-well), culture flasks, etc. Some cells are particularly hardy (e.g., bacteria) and may require the addition of 0.1 to 1% Triton X-100 to the 0.1M HCl for enhanced lysis. If Triton X-100 is added to samples it should also be added to the standard dilution as a modest increase in optical density may occur.

- Pellet suspension cells and aspirate the media. Treat cells with 0.1M HCl. A general starting concentration of 1 x 10⁶ cells per mL of 0.1M HCl is recommended. Remove the media from adherent cells and add enough 0.1M HCl to cover the bottom of the plate. Avoid over-diluting the sample with an excessive volume of HCl. Please note that the culture media may be saved and assayed separately, if desired.
- 2. Incubate the cells in 0.1M HCl for 10 minutes at room temperature.
- 3. Inspect the cells under a microscope to ensure uniform lysis. Continue incubating for an additional 10 minutes, if necessary.
- 4. Centrifuge $\geq 600 \text{ x g to pellet the cellular debris.}$
- 5. The supernatant may be assayed immediately or stored frozen for later analysis.

Note: Standards must be diluted in 0.1 M HCI and Neutralizing Reagent used.


PROTOCOL FOR TISSUE SAMPLES

- 1. After collection, tissue samples should be flash frozen in liquid nitrogen. If analysis cannot be carried out immediately, store tissue at -80°C.
- 2. Grind frozen tissue to a fine powder under liquid nitrogen in a stainless steel mortar.
- 3. When liquid nitrogen has evaporated, weigh the frozen tissue and homogenize in 10 volumes of 0.1M HCl (e.g., 0.1 g of tissue should be homogenized in 1 mL of 0.1M HCl).
- 4. Centrifuge $\geq 600 \text{ x g to pellet the debris } (\sim 10 \text{ minutes}).$
- 5. The supernatant may be further diluted in the 0.1M HCl provided and run directly in the assay or stored frozen for later analysis.

Note: Standards must be diluted in 0.1 M HCI and Neutralizing Reagent used.

REAGENT PREPARATION

- 1. Wash Buffer
 - Prepare the wash buffer by diluting 5 mL of the supplied Wash Buffer Concentrate with 95 mL of deionized water. This can be stored at room temperature until the kit expiration, or for 3 months, whichever is earlier.
- 2. cAMP Standard, non-acetylated format

Allow the 2,000 pmol/mL standard stock to warm to room temperature. Label five 12mm x 75mm tubes #1 through #5. Pipet 900 μ L of the 0.1 M HCl into tube #1. Pipet 750 μ L of the 0.1 M HCl into tubes #2 through #5. Add 100 μ L of the 2,000 pmol/mL standard stock into tube #1 and vortex thoroughly. Add 250 μ L of tube #1 to tube #2 and vortex thoroughly. Add 250 μ L of tube #2 to tube #3 and vortex thoroughly. Continue this for tubes #4 through #5.

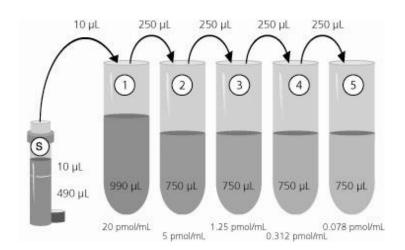
Diluted standards should be used within 60 minutes of preparation. The concentrations of cAMP in the tubes

Glass or polypropylene tubes may be used for standard preparation. Avoid polystyrene.

Enzo

Triethylamine and acetic anhydride are lachrymators. Caution: corrosive, flammable, and harmful vapor.

Glass or polypropylene tubes may be used for standard preparation. Avoid polystyrene.


Bring all reagents to room temperature for at least 30 minutes prior to opening.

are labeled above.

Acetylation Reagent (optional) 3.

Prepare the Acetylating Reagent by adding 0.5 mL of Acetic Anhydride to 1 mL of Triethylamine. Note that this volume is sufficient to add to 30 mL of diluted standards and samples. Use the prepared reagent within 60 minutes of preparation. Discard any unused portion of the Acetylating Reagent.

4. cAMP Standard, acetylated format (optional)

Allow the 2,000 pmol/mL standard stock to warm to room temperature. Label five 12mm x 75mm tubes #1 through #5. Pipet 990 μL of the 0.1M HCl into tube #1. Pipet 750 μ L of the 0.1M HCl into tubes #2 through #5. Add 10 μ L of the 2,000 pmol/mL standard stock into tube #1 and vortex thoroughly. Add 250 µL of tube #1 to tube #2 and vortex thoroughly. Add 250 µL of tube #2 to tube #3 and vortex thoroughly. Continue this for tubes #4 through #5.

Acetylate all standards and samples by adding 10 µL of the Acetylating Reagent for each 200 µL of the standard or sample. Add the Acetylating Reagent directly to the diluted standard or sample and vortex immediately after the addition of the Acetylating Reagent.

Label one 12mm x 75mm tube as the Bo/NSB tube. Pipet 1 mL of the 0.1M HCl into this tube. Add 50 µL of the Acetylating Reagent to the Bo/NSB tube and use in Steps 2 and 3 of the Assay Procedure.

The acetylated standards and samples should be within 30 minutes of preparation. used The concentrations of cAMP in the tubes are labeled above.

ASSAY PROCEDURE

Refer to the Assay Layout Sheet to determine the number of wells to be used. Remove the wells not needed for the assay and return them, with the desiccant, to the mylar bag and seal. Store unused wells at 4°C.

Note: If the acetylated format of the assay is to be run, all standards, samples, and the diluent for the NSB and Bo wells must be acetylated as per the instructions in the Reagent Preparation section. Acetylated standards and samples must be used within 30 minutes.

- 1. Pipet 50 µL of Neutralizing Reagent into each well except the Total Activity (TA) and Blank wells.
- Pipet 100 µL of the 0.1M HCl into the NSB (non-specific binding) and Bo (0 pmol/mL standard) wells.
- 3. Add 50 μ L of 0.1M HCl to the NSB wells.
- 4. Pipet 100 μL of Standards #1 through #5 to the bottom of the appropriate wells.
- 5. Pipet 100 μ L of the samples to the bottom of the appropriate wells.
- Pipet 50 μL of the blue conjugate into each well except the TA and Blank wells.
- 7. Pipet 50 μ L of the yellow antibody into each well except the Blank, TA, and NSB wells.

Note: Every well used should be green in color except the NSB wells which should be blue. The Blank and TA wells are empty at this point and have no color.

- 8. Seal the plate. Incubate for 2 hours on a plate shaker (~500 rpm) at room temperature.
- 9. Empty the contents of the wells and wash by adding 400 µL of wash buffer to every well. Repeat 2 more times for a total of 3 washes. After the final wash, empty or aspirate the wells and firmly tap the plate on a lint free paper towel to remove any remaining wash buffer.
- 10. Pipet 5 μ L of the blue conjugate to the TA wells.
- 11. Add 200 μ L of the substrate solution into each well.
- 12. Incubate for 1 hour at room temperature without shaking.
- 13. Pipet 50 µL stop solution into each well.
- 14. After blanking the plate reader against the substrate blank, read optical density at 405 nm. If plate reader is not capable of adjusting for the blank, manually subtract the mean OD of the substrate blank from all readings.

All standards and samples should be run in duplicate.

Pre-rinse each pipet tip with reagent. Use fresh pipet tips for each sample, standard, and reagent.

Pipet the reagents to the sides of the wells to avoid possible contamination.

Prior to the addition of the antibody, conjugate and substrate, ensure there is no residual wash buffer in the wells. Remaining wash buffer may cause variation in assay results.

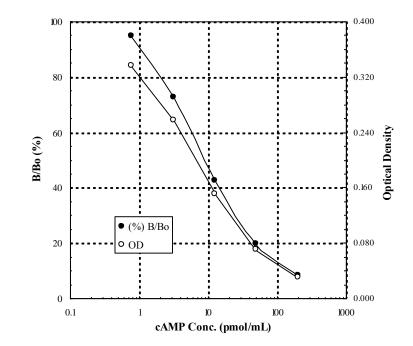
Make sure to multiply sample concentrations by the dilution factor used during sample preparation.

CALCULATION OF RESULTS

Several options are available for the calculation of the concentration of cAMP in the samples. We recommend that the data be handled by an immunoassay software package utilizing a 4 parameter logistic (4PL) curve fitting program. Assay Blaster! Assay Analysis software (Cat. #ADI-28-0002) is an easy-to-use and cost effective program that provides the options of point-to-point, 4PL and 5PL curve fitting options.

Samples with concentrations outside of the standard curve range will need to be re-analyzed using a different dilution.

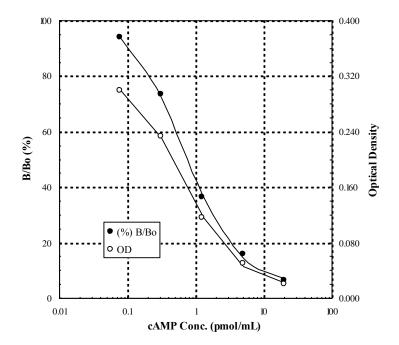
To normalize for protein content, divide the resulting picomole per mL determinations (pmol/mL) by the total protein concentration (mg/mL) in each sample. This is expressed as pmol cAMP per mg of total protein.



TYPICAL RESULTS

The results shown below are for illustration only and should not be used to calculate results from another assay.

Sample	Average Net OD	Percent	cAMP
		Bound	(pmol/mL)
Blank (mean)	(0.088)		
TA	0.506		
NSB	-0.001	-0.35%	
Во	0.354	100%	0
S1	0.030	8.4%	200
S2	0.069	19.5%	50
S3	0.151	42.6%	12.5
S4	0.258	72.8%	3.125
S5	0.335	94.6%	0.781
Unknown 1	0.119	33.6%	19.68
Unknown 2	0.264	74.5%	2.86



Acetylated assay format

Sample	Average Net OD	Percent	cAMP
		Bound	(pmol/mL)
Blank (mean)	(0.097)		
ТА	0.495		
NSB	-0.001	-0.36%	
Во	0.331	100%	0
S1	0.021	6.5%	20
S2	0.050	15.8%	5
S3	0.117	36.6%	1.25
S4	0.233	73.1%	0.312
S5	0.300	94.0%	0.078
Unknown 1	0.047	14.8%	4.90
Unknown 2	0.103	32.4%	1.56

PERFORMANCE CHARACTERISTICS

Specificity

The cross reactivities for a number of related compounds were determined by diluting the cross reactants in the standard diluent at a concentration of ten times the high standard. These samples were then measured in the assay.

Compound	Cross Reactivity
cAMP	100%
AMP	0.33%
ATP	0.12%
cGMP	<0.001%
GMP	<0.001%
GTP	<0.001%
cUMP	<0.001%
СТР	<0.001%

Sensitivity

The sensitivity of the assay, defined as the concentration of cAMP measured at 2 standard deviations from the mean of 16 zeros along the standard curve, was determined to be 0.39 pmol/mL in the non-acetylated assay format and 0.037 pmol/mL in the acetylated assay format.

Linearity

0.1M HCl sample containing cAMP was serially diluted 1:2 in the 0.1M HCl diluent and measured in the assay. The results are shown in the table below.

Non-acetylated

Dilution	Expected (pmol/mL)	Observed (pmol/mL)	Recovery (%)
Neat		15.44	
1:2	7.72	8.24	107%
1:4	3.86	3.67	95%
1:8	1.93	2.32	120%

Acetylated

Dilution	Expected (pmol/mL)	Observed (pmol/mL)	Recovery (%)
Neat		3.41	
1:2	1.70	2.03	119%
1:4	0.85	0.95	111%
1:8	0.43	0.49	115%

Precision

Intra-assay precision was determined by assaying 20 replicates of three 0.1M HCl controls containing cAMP in a single assay.

Non-Acetylated Format	
pmol/mL %CV	
1.24	8.9
6.31	4.3
35.92	8.3

Acetylated Format		
pmol/mL %CV		
0.679	4.6	
3.58	8.4	

Inter-assay precision was determined by measuring 0.1M HCl controls of varying cAMP concentrations in multiple assays over several days.

Non-Acetylated Format		
pmol/mL %CV		
1.18	13.1	
5.53	4.2	
30.36	11.6	

Acetylated Format		
pmol/mL %CV		
1.29	13.6	
5.62	7.8	

REFERENCES

- 1. E.W. Sutherland, G.A. Robison, and R.W. Butcher, Circulation, (1968) 37: 279.
- 2. T.W. Rall, et al., J. Biol. Chem., (1957) 224: 463.
- 3. T.W. Cook, et al., J. Am. Chem. Soc., (1957), 79: 3607.
- 4. E.W. Sutherland, and T.W. Rall, J. Am. Chem. Soc., (1957) 79: 3608.
- 5. D. Lipkin, et al., J. Am. Chem. Soc., (1959) 81: 6198.
- 6. D. Chabardes, et al., J. Clin. Invest., (1980) 65: 439.
- 7. V. Grill, and E. Cerasi, J. Biol. Chem., (1974) 249: 41961.
- 8. R.C. Haynes, J. Biol. Chem., (1958), 233: 1220.
- 9. A. Szentivanyi, J. Allergy, (1968) 42: 203.
- 10. P. Hamet, et al, Adv. Cycl. Nucl. Res., (1983) 15: 11.
- 11. M. Plaut, et al, Adv. Cycl. Nucl. Res., (1983) 12: 161.
- 12. J.H. Exton, Adv. Cycl. Nucl. Res., (1983) 12: 319.

NOTES

NOTES

NOTES

GLOBAL HEADQUARTERS

Enzo Life Sciences Inc. 10 Executive Boulevard Farmingdale, NY 11735 Toll-Free:1.800.942.0430 Phone:631.694.7070 Fax: 631.694.7501 info-usa@enzolifesciences.com

EUROPE

Enzo Life Sciences (ELS) AG Industriestrasse 17 CH-4415 Lausen Switzerland Phone:+41/0 61 926 89 89 Fax:+41/0 61 926 89 79 info-ch@enzolifesciences.com

For local distributors and detailed product information visit us online: www.enzolifesciences.com

Catalog Number: ADI-900-066

Rev. 12/28/16